1. Докажите, что произведение четырех последовательных целых чисел, сложенное с единицей, есть точный квадрат.
Решение: Пусть это 4 последовательных числа: n, n + 1, n + 2, n + 3. Тогда n (n + 1)(n + 2)(n + 3) + 1 = (n2 + 3n)(n2 + 3n + 2) + 1 = (n2 + 3n)2 + 2(n2 + 3n) + 1 = (n2 + 3n + 1)2.
Решение: Перенесем в левую часть и прибавим, и вычтем по cos8x. В результате полученное уравнение можно преобразовать к виду (sin4x – cos4x)2 + cos2x(1 – cos6x) = 0, которое равносильно следующей системе: Решая второе уравнение и подставляя его решения в первое уравнение, в результате получим решение исходного уравнения . Ответ:
Здесь ты найдешь уроки, исследования, интересные факты и вдохновение для творчества.
Решение: Прежде всего заметим, что все корни уравнения если они существуют, удовлетворяют неравенствам x²-4 ≥ 0 и 12 — 3x² ≥ 0 . Так как второе неравенство равносильно неравенству x²-4 ≤ 0 , то оба неравенства выполняются лишь при условии x²-4 = 0. Это последнее уравнение имеет два корня: x1 = 2 и x2 = -2. Итак, если исходное уравнение имеет корни, то их следует искать среди чисел 2 и -2. Проверка показывает, что 2 является корнем исходного уравнения, а число -2 – нет. Следовательно, уравнение имеет единственный корень.
4. Решите уравнение:
1 + (2: (1 + (1005: (1 + (1007 : (1 + ( 2 : (1 + х))))))))= 2013
Ответ: х =-2
5. Найдите периметр равнобедренной трапеции, у которой меньшее основание равно 8, острый угол 45° и высота равна 2 √2.
Ответ: 4 √2 + 2
6. Диагональ МP параллелограмма MKPD равна 24 см. А- середина стороны MK — соединена с вершиной Д. Найдите отрезки, на которые делится MP отрезком DА.
Ответ: 16:8